Posted on

Utilizing XGBoost training reports to improve your models

Share

In 2019, AWS unveiled Amazon SageMaker Debugger, a SageMaker capability that enables you to automatically detect a variety of issues that may arise while a model is being trained. SageMaker Debugger captures model state data at specified intervals during a training job. With this data, SageMaker Debugger can detect training issues or anomalies by leveraging built-in or user-defined rules. In addition to detecting issues during the training job, you can analyze the captured state data afterwards to evaluate model performance and identify areas for improvement. This task is made easier with the newly launched XGBoost training report feature. With a minimal …

Read More