Posted on

The State of Indoor Positioning and Asset Tracking Using BLE and LoRa

Illustration: © IoT For AllThe indoor positioning and asset tracking space remains the wild west despite many companies working towards developing a robust, cost-effective, scalable solution. BLE, WiFi, Ultra Wide Band, RFID, and Ultrasonic, to name a few, have been used in the past to develop Indoor Positioning and Asset …

Read More

Posted on

What Are LoRa and LoRaWAN? | Wienke Giezeman, CEO & Co-Founder of The Things Industries

#IoTFounders E048

Listen on Apple Podcast  |  Listen on Spotify  |  Listen on Google Podcasts

On this IoT For All podcast episode, Wienke Giezeman, CEO and Co-Founder of The Things Network, discusses what LoRa and LoRaWAN are, the role they play in the IoT connectivity space and how they are fueling the growth and adoption of IoT.

Wienke touches on the types of use cases that are best suited for LoRaWAN, what types of use cases LoRaWAN is not well suited for, the current state of the Internet of Things industry and how market fragmentation is affecting IoT adoption across the board.

Wienke and his team are putting on an industry event called the Things Conference where experts from all over the world will come together to discuss all things LoRaWAN. He was generous enough to provide us a discount code to all our readers and listeners if you are interested in attending! Please use the code: iot-for-all

Interested in connecting with Wienke? Check out his LinkedIn!

About The Things Industries: The Things Industries provides a LoRaWAN network management system that allows anybody to build LoRaWAN networks where data is routed in a secure end to end manner. Being interoperable with many IoT data platforms, LoRaWAN gateways and LoRaWAN sensors.

Key Question and Topics from this Episode:

(03:18) What is the Things Network Conference?

(07:30) Winke Giezeman Intro

(10:50) What is LoRa? What is LoRaWAN?

(16:15) How does LoRaWAN fit into the LPWAN connectivity spectrum and how do LPWAN technologies influence IoT Adoption?

(30:50) What use cases is LoRaWAN best suited for? Not well suited for?

(38:42) What is the current state of IoT and what are the biggest challenges affecting IoT adoption?

(41:12) How does the fragmentation of the IoT market affect adoption?

(43:16) How is hardware affecting IoT adoption? What needs to be done to make IoT hardware better?

(46:33) What should we be most excited about for 2020 as it is related to LoRaWAN?

Source: IoT For All

Posted on

Selecting the Right Low-Power Wide-Area Network (LPWAN) Technology

Illustration: © IoT For All

The world of the Internet of Things (IoT), and its uses across industries, is expanding drastically. It’s transforming the way human and devices interact with each other, creating market opportunities and enabling change across industries. Continuous enhancements in various technologies make it very difficult for the user to select the best technology for their specific needs. Based on various parameters, there are a few low-power wide-area network (LPWAN) technologies to consider.

Some broad parameters to include and the best protocols for long-range communications are the following:

  • Type of industry application
  • Easy access to technology and hardware availability
  • RF band of operation
  • Data rate
  • Security concerns
  • Availability of technology support
  • Power consumption

LoRA 

LoRa stands for long-range radio. It’s a wireless protocol specifically designed for long-range, low-power communications. It mainly targets M2M and IoT networks, and it was developed by Semtech. This technology enables public or multi-tenant networks to connect the number of applications running on the same network.

LoRa Alliance was formed to standardize LPWAN for IoT; it’s a non-profit association that features membership from the number of key market shareholders, which includes CISCO, Actility, MicroChip, IBM, STMicro, Semtech, Orange Mobile and many more. This alliance is key to providing interoperability among multiple nationwide networks.

LoRa devices offer features such as long-range, low-power consumption, and secure data transmission for IoT applications. These technologies provide greater range than cellular networks and can be used by public, private or hybrid networks. It can easily plug into existing infrastructure and enables low-cost battery-operated IoT applications.

Applications for LoRa wireless technology include smart metering, inventory tracking, vending machine data and monitoring, and automotive industry and utility applications. These technologies are widely deployed and incorporated with many systems; even the small maker-style computers like Arduino have LoRa options. Accordingly, it’s very easy to develop LoRa applications for both large-scale manufacture and more specialist applications.

SigFox

SigFox is a French global network operator, currently deployed in 19 countries, covering 1.2 million km². It operates at 868 or 915 MHz and transmits very small amounts of data very slowly (300 b/s) using binary phase-shift keying (BPSK). It can achieve long-range coverage and has general characteristics that make it well suited for any IoT application requiring only small amounts of data.

SigFox sets up antennas on towers (like a cell phone company) and receives data transmissions from devices (like parking sensors or water meters). These transmissions use frequencies that are unlicensed with a 915 MHz ISM band in the US, which is the same frequency a cordless phone uses.

This technology is suitable for any application that needs to send small, infrequent bursts of data. Things like basic alarm systems, location monitoring, and simple metering are examples of one-way systems. The signal is sent a few times to “ensure” the message goes across; there are few limitations, such as shorter battery life for battery-powered applications and lack of ability to ensure the message is received by the tower.

LTE-M

LTE-M is an LPWAN radio technology standard developed by 3GPP release, 13 standard that defines narrowband IoT (NB-IoT or LTE Cat NB1). LTE-M leverages lower-cost modules, enables extended battery life, provides better signal penetration, and has the ability to use existing infrastructure.

With uplink and downlink speeds of 375 kb/s in half-duplex mode, Cat M1 supports IoT applications with low to medium data-rate needs. At the same speed, LTE Cat M1 can deliver remote firmware updates over the air (FOTA) within a feasible time period. This creates the best possible IoT connectivity solution for security, scaling, and cost.

It has a narrow bandwidth of 1.4 MHz compared to 20 MHz for regular LTE, giving a longer range. Using the same cell handover features as in regular LTE, mobility is fully supported. It’s possible to roam with LTE-M, as it’s suitable for applications that can be operated across multiple regions. The latency is in the millisecond range, offering real-time communication for time-critical applications. Battery life is up to 10 years, on a single charge with low-cost maintenance, even when end devices can’t be connected directly to the power grid.

A discourse on various IoT protocols is helpful when trying to select the best protocols for long-range communication. Due to its dependence on multiple aspects, deciding on the selection of long-range communication wireless technology for your application can still be challenging.

Written by Priyanka Purbe, Senior Firmware development Engineer, VOLANSYS
Source: IoT For All