The proliferation of big data across domains, from banking to health care to environmental monitoring, has spurred increasing demand for machine learning tools that help organizations make decisions based on the data they gather.
That growing industry demand has driven researchers to explore the possibilities of automated machine learning (AutoML), which seeks to automate the development of machine learning solutions in order to make them accessible for nonexperts, improve their efficiency, and accelerate machine learning research. For example, an AutoML system might enable doctors to use their expertise interpreting electroencephalography (EEG) results to build a model that can predict which …